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Directed polymers in a random medium: Universal scaling behavior of the probability distribution
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We study the probability distribution P(x,¢) for the head of a directed polymer in a random medium
in 1+ 1 dimensions. We find that, as a function of the scaling variable u = |x|/t%/3, the behavior of the
probability distribution changes abruptly at u,=~1.2. Its universal part is given by P <exp(—au’)
where the exponent « is distributed for different samples according to P(a)=Nexp[ —f(a)u’]. For
0255 u <u,, y=2.11+0.1 and the multifractal measure f(a) is a convex function with a minimum at
@y, Which is the exponent associated with a typical sample of the disorder. For u >>u., y=3.0+0.1

and f(a) becomes trivial.

PACS number(s): 05.40.+j, 05.20.—y, 75.10.Nr, 02.50.—r

In the last few years, considerable attention has been
focused on the role of disorder and random perturbations
in the statics and dynamics of various systems, whether
concerning bulk properties or the scaling behavior of
rough interfaces. Recently some progress has been made
both theoretically [1-9] and experimentally [10] on the
problem of directed walks in random media and more
generally of directed manifolds [11]. These models share
many properties of more notorious disordered systems,
such as spin glasses, but are considered “simpler.” Fur-
thermore, they are of fundamental interest because of the
mapping of such systems to the Kardar-Parisi-Zhang
equation for interface growth and to the Burgers equa-
tion for randomly stirred fluids [12]. Here we demon-
strate that this model can be analyzed using the powerful
tool of multifractal formalism introduced previously for
dynamical systems [13-20].

A directed walk (or directed polymer) is a path in d +1
dimensions, for which one of the coordinates (called
“time”) is always increasing along the path. One may
consider such a walk on a disordered substrate by having
it interact with a random potential at each site. In these
models, the disorder is “time”-dependent and uncorrelat-
ed along that axis. In 1+ 1 dimensions, the model may
describe a domain wall (without “overhangs”) in a disor-
dered Ising model [1]. Some of the properties of directed
polymers in random media, such as the wandering ex-
ponent v({{x?) )z ~t?*) and the exponent characteriz-
ing the free-energy fluctuations are known exactly in
1+1 dimensions [2,3], provided the spatial correlations
of the disorder are short ranged. One method [2] for ex-
tracting these exponents uses a Bethe ansatz for the
ground-state wave function of an associated replicated
Hamiltonian, and another method [3] uses some known
properties of the Burgers equation. The exponent v=2
indicates superdiffusivity, the tendency of the walk to
wander farther in the transverse direction (than it would
for purely entropic reasons) in order to take advantage of
the random potential. While these two exponents are
known exactly, the model has many features that are not
yet understood. For instance, there is no known exact
expression for the Green’s function (although some ap-
proximate formulas have been suggested within the
framework of the replica formulation) [4-6].

In this Rapid Communication we report on some re-
sults concerning the probability distribution for the head
of a directed polymer in a random medium. We have
based these results on extensive numerical simulations to-
gether with a theoretical interpretation and analysis. At
a finite temperature 1/, the walker acquires a random
Boltzmann factor e “#¥*? at each site it visits, where
V(x,t) satisfies

(V(x, )V (x',t")) =v,8(t —t")8(x —x") , (1)
and where ( ) indicates averaging over the random po-
tential. In this work we have used a random potential
with a Gaussian distribution, zero mean, and standard
deviation of 1. The partition function (or Green’s func-
tion) is given by

Z(x,t)= 3, II e

paths (x’,¢') € path

—BV(x',t) , 2)

which sums over all possible directed paths connecting
(0,0) to (x,t). The probability distribution is then defined
as

Z(x,t)

S - 3)

P(x,t)=

Given the scaling of the transverse fluctuations, it is
convenient to introduce the variable u =|x|/t%/3. We
have found that for large ¢ and for u $0.25 the average
probability  distribution takes the scaling form
(P(x,t))=1t"%*P(u). Furthermore, we have observed
that P(u) changes from

P(u)~exp{—Au?} for 0.25<u<1.2 (4a)
to

P(u)~exp{ —A,u’} for 2.0<u , (4b)
with an unsmooth transition region in between

(1.2=<u =2.0).

More generally, one can characterize the behavior of
P(x,t) among different realizations of the disorder by a
distribution of exponents, provided by a universal func-
tion f(a). Such a function is reminiscent of the mul-
tifractal spectrum introduced for dynamical systems for
describing the distribution of fractal dimensions corre-
sponding to strange attractor sets with different associat-
ed singularities [13]. Similar rich scaling behavior has
also been found in other complex inhomogeneous sys-
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tems, such as turbulence [14], diffusion-limited aggrega-
tion (DLA) [15], Anderson localization [16], random-
resistor networks [17], and random walks on percolation
clusters [18]. Closer in nature to the present application
of this formalism are recent studies of scaling in diluted
ferromagnets [19] and of flow in stratified media with
random velocity fields [20], both involving many realiza-
tions of spatial disorder.

In the present case, f(a) governs the distribution of
the exponents a in the expression

P(x,t)~exp{—alu’} . (5)

Notice that P is not averaged and that this expression in-
cludes both regions of Eq. (4) where A=A, y=2 in re-
gion 1 and A=A,, y=3 in region 2. The value corre-
sponding to the minimum of f(a), a,, characterizes the
behavior of P for a typical realization; it is larger than
a=1, which yields the mean behavior. The large param-
eter in our model, which allows for the extraction of the
multifractal behavior (the analog of 1// in dynamical sys-
tems [13]), is a combination of ¢ and u [see Egs. (11) and
(12) below].

We now present the results in greater detail. We have
evaluated the Green’s function Z (x,t) defined in Eq. (2)
by using the recursion relation [21]

Z(x,)=[Z(x—1,t—1)+Z(x+1,t —1)]
Xexp{—BV(x,t)} , (6)

with Z(0,0)=1. This method includes all possible
directed paths for each realization. The largest lattice
size simulated is 1000X 1000. The averaged probability
distribution has been obtained by averaging Eq. (3) over
30000 to 50000 realizations of the disorder. We have
carried out the calculation for several different tempera-
tures in the range S=1-5 (where 8=1/kT). The effect of
temperature will be discussed later, but one expects the
qualitative features of the model to be similar for
different temperatures since in 1+ 1 dimensions the scal-
ing behavior is governed by a zero-temperature fixed
point [7]. The simulations have been done on a Cray
supercomputer, which allows for real numbers in the
range 0.367X 1072 <R <0.273X10%*%¢. The results
were checked for reproducibility on other machines.

In addition to the average probability (P ), we have
also calculated the averaged moments {P%x,t)) with
—1.9<g <3 and the histograms P(Y) with

Y=—In[P(x,1)] . (7

The histogram measures the number of realizations for
which —In(P) falls between Y and Y +dY. The averaged
moments of the probability distribution and the histo-
grams are related to each other by a Laplace transform:

(PUx,1,8)) = [ * e P(Y;x,1,B)dY (82)
and its inverse
. —_1 dti® gy pg
PYx,08)=5 = [ """ e (PUx,t,8)dg . (8b)

Loosely speaking, small-|g| moments are primarily
influenced by the region in which 2(Y) has its maximum,
i.e.,, by typical events, while large-|g| moments are
governed by the tail of P(Y), i.e., by rare events.

In Fig. 1, we have displayed some log-log plots of the
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FIG. 1. A log-log plot of —log,[{Px,t))/A(q,t)] vs

u=|x|/t*?, where A(q,t)=max[{(P%Ux,t))] for
t =1000, and g =1.0, 2.0 and 3.0 from bottom to top.

B=2.0,

(normalized) moments of the probability distribution
versus u, where the axes have been rescaled appropriately
(see caption). One can clearly see the two regimes with
different slopes (as noted above) and different g depen-
dence. The slope changes from a value y =2.1+0.1 in re-
gion 1 (0.25<u%=1.2) to y=3.0£0.1 in region 2
(2.0<u <4.0) with a transition region (1.2=<wu <2.0).
The g dependence is much more pronounced in region 2
for 1 <qg <3.

To aid in the analysis of the numerical results, we have
introduced two functions 7(q;u,t,3) and 7(q;u,t,3)—the
former more closely connected to the histograms, the
latter more convenient for considering the scaling
behavior. The first 7(q) is defined by the relation

(Px,1,B)) =(P(x,t,B))"9:%tB ©)

and satisfies 7(¢ =0)=0 and (¢ =1)=1. The second 7 is
defined via

(PUx,t,B))= A (t,q,B)exp{ — g ;u,t,B)u’} (10)

in each of the scaling regimes (and y is the corresponding
exponent in region 1 or 2). The functions 7 and 7 differ
by an overall multiplicative constant; in addition, the
former includes the (weaker) g dependence of the
coefficient 4. In the following we will mainly consider 7
and comment briefly on the behavior of 7.

To see the connection between 7(g) and the histo-
grams, substitute Eq. (9) into Eq. (8b) to obtain

__1 rotie —Crig)+qY
PY)=5 - [ “dge , (1
where
C=—In{P(u,t,B))=21In(t)+Au’+const . (12)

Note that C is large for large ¢ (even for fixed u), and
hence one can apply the method of steepest descent to the
above integral. The integral is dominated by a value
q*(a) satisfying 7'(¢*)=Y/C=a. One can thus express
the distribution in the form

P(Y)~Nexp{—Cf(Y/C)} (13)
with
fla)=1(g*(a))—qg*(a)a . (14)

Hence, the function 7(q) describing the moments of P
and the function f(a) characterizing the histograms are
related by a Legendre transformation. Recalling the
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definition of Y from Eq. (7), we obtain
P(u,t)=exp{—Y}=exp{—aCl(u,t)}
< t2Bexp{ —aiu’} , (15)

with the exponent a distributed among realizations ac-
cording to

Pla)~CNexp{ —Cf (a)} . (16)

Consider first the behavior in region 1. A study of 7 in
this region reveals that it has no (systematic) dependence
on u and has a weak time dependence to be discussed
below. We have calculated the function f(a) from Eq.
(14) as the Legendre transform of 7(q). We have then
used it to calculate P(Y) from Eq. (13), which is shown in
Fig. 2 along with the histogram obtained directly from
the simulation—the agreement is good.

The functions 7(q) and f(a) are displayed in Fig. 3 for
t =1000 and B=1. The support of f(a) lies between
O min, Which is slightly greater than zero and a,,,. These
values correspond to the derivatives of 7(q) for large |g|
and may be measured more precisely by simulating larger
g values. The function f(a) can be fit to a polynomial by
expanding it about its minimum a,,:

f(a)—“—az(a—atyp)2+a3(a-—atyp)3+a4(a—-atyp)4+ el
(17

have found «,,=3.01,
a,=—1/27"(0)=2.8X107%, a;=-—5.3X10"°, and
a,=4.7X1073. The (small) nonquadratic terms intro-
duce non-Gaussian corrections to the histograms 7(Y).
The value a,,,=7'(0) provides, when substituted in Eq.
(15), the value of P(u,t) for a typical realization. Notice
that P,,.(u,t) is smaller by several orders of magnitude
from the value {P(u,t)) corresponding to a=1. One
can show that

&y, =(In(P))/In(P) , (18)

where for pB=1 we

and hence its deviation from 1 provides a measure for the
lack of self-averaging of P. The large disparity between

P, and (P) arises because, for some very rare
~
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FIG. 2. Histograms P(Y;u,t) for u =0.6, 1.0, and 2.0 (from
left to right ) for 3=1.0 and z =1000. The smooth curve is the
fit for u = 1.0 derived using Eq. (13).
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FIG. 3. (a) 7(q) in region 1 for S=1. (b) The corresponding
f(a) (its Legendre transform).

configurations, P is significantly larger than P, and
thus they shift the mean value considerably.

Using 7(q) instead of 7(q), one can repeat the steps out-
lined above; however, the results are somewhat less accu-
rate since u? is not large enough in region 1 to justify the
saddle-point approximation. We now comment on the
temperature and time dependence of 7(g) and f(a). The
quantity C=—In{P) has no apparent temperature
dependence in region 1 for ’s between 1 and 5. We have
determined that the data in that temperature range near-
ly collapse if we plot the function g(a)=fs(B%) for
z=1, where fg(a) is the same as f (a) defined in Eq. (14),
with the temperature dependence shown explicitly. This
means in particular that a,,, increases nearly linearly
with B in that temperature range. It will be necessary to
simulate lower temperatures in order to obtain the value
of z in the limit of small 7. As for the time dependence,
we have discovered that 7'(0)=a,,, has a weak time
dependence and behaves roughly like ¢%3 for large times.
This is in agreement with the prediction of the toy model
[4-6] (see below) that {In(P)) < —¢1/342,

Consider now region 2. In this region we have found
that as u increases the function 7(q) becomes linear in g
[7(g)=q]. The peak of its Legendre transform, f(a),
migrates toward a=1 [=7'(0)] and its width vanishes.
Thus it can be said that f(a) becomes trivial. This im-
plies in particular that for the large u,
(In(P)) /In({P))—1 as u—> o, and in this sense one
might say that P becomes self-averaging.

Note, however, that the histograms of ¥ =—In(P) do
not necessarily become narrower as u increases, since
Y =C(u)a and C(u) grows with u. Only the ratio of the
width to the position of the maximum of the histogram
vanishes for large u. The numerical simulations suggest
that the width of the Y histograms, initially growing,
tends to saturate for large u, but an exact dependence on
u cannot be established without simulating larger times.

Even for u =1, the range of a’s originates mainly from
fluctuations of A4 (z), which is independent of u, as is indi-
cated by the fact that 7(g) defined in Eq. (10) is linear in g
for all the range u =2. Thus for the entire range u =2,
the exponential part of P, which behaves like
~exp{ —A,u?}, acquires a universal form that is indepen-
dent of the realization.

The temperature dependence of A, is nearly linear in 3
for large f3, i.e., A,=4.38B. If this trend continues for
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higher ’s (the largest B we have considered is =15), then
it may suggest that the probability distribution evaluated
strictly at 7' =0 will lack the u > region of the tail. How-
ever, we should note that some change in the scaling
behavior for u slightly bigger than 1 has been observed in
Ref. [7], where an effective exponent of y =2.2 is report-
ed. To probe enough of the high-u region at T =0 and
check whether it indeed crosses over to a different scaling
behavior would require an enormous number of realiza-
tions. :

We would like to point out that the value of u at which
the scaling behavior of (P(u,t)) undergoes a change
(u,~1.2) appears to coincide with the u value for which
the tail of the histogram ?(u,t;Y) pulls away from the
Y =0 axis. (See Fig. 2.) Having a Y near zero implies
having P(u,t) near 1; therefore, (P (u,t)) changes its
scaling behavior when P (u,t) is significantly smaller than
1 for nearly all of the realizations generated.

The u? behavior we have observed in the tail has been
predicted previously using the replica method. This for-
malism has led, using some approximations [4-6], to a
mapping of the directed polymer problem into a related
“toy” model with a Hamiltonian consisting of a quadratic
piece gx2/2 and a random potential ¢(x), the slope of
which is a Gaussian random variablgé [22]. Using this
mapping, several authors have been led to a number of
predictions, some in agreement with numerical simula-
tions for directed polymers and some in apparent

YADIN Y. GOLDSCHMIDT AND THOMAS BLUM 47

disagreement [4-7]. One of the predictions is that
In{P(u)) < —u?> in the tail, as it is for the toy model [22].
The validity of this prediction for directed polymers has
not been checked before, and our work shows that it
agrees with the numerical measurements. There does not
seem to be a general criterion at this time to distinguish
which of the predictions of the toy model is accurate.

To conclude, we have investigated the behavior of the
probability distribution for directed polymers in random
media and have discovered two distinct scaling regimes in
terms of the scaling variable x /t2/3. The distribution of
scaling exponents for the probability distribution among
various realizations of the disorder is governed by a con-
vex universal function f (a), which is related via a Legen-
dre transformation to the function 7(gq) characterizing
the averaged gth moment of the probability. The func-
tion f(a) is also related to the shape of the histograms of
—In(P) among different realizations. In the inner scaling
region, f (a) is broad, whereas in the outer scaling region
its width shrinks to zero for large u, implying a
realization-independent (self-averaging) form of (P) in
this limit.

This work was supported by the National Science
Foundation under Grant No. DMR-9016907. We also
thank the Pittsburgh Supercomputer Center for comput-
ing time allocation under Grant No. PHY910027P.

[1]1D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708
(1985).

[2] M. Kardar, Phys. Rev. Lett. 55, 2923 (1985); Nucl. Phys.
B 290, 582 (1987).

[3] D. A. Huse C. L. Henley, and D. S. Fisher, Phys. Rev.
Lett. 55, 2924 (1985).

[4] G. Parisi, J. Phys. (Paris) 51, 1595 (1990).

[5] M. Mézard, J. Phys. (Paris) 51, 1831 (1990).

[6]J. P. Bouchaud and H. Orland, J. Stat. Phys. 61, 877
(1990).

[7] T. Halpin-Healy, Phys. Rev. A 44, R3415 (1991).

[8] D. S. Fisher and D. A. Huse, Phys. Rev. B 43, 10728
(1991).

[9] J. M. Kim, M. A. Moore, and A. J. Bray, Phys. Rev. A 44,
2345 (1991); J. Krug, P. Meakin, and T. Halpin-Healy,
ibid. 45, 638 (1992).

[10] C. Poirier, M. Ammi, D. Bideau, and J. P. Troadec, Phys.
Rev. Lett. 68, 216 (1992).

[11] M. Mézard and G. Parisi, J. Phys. (France) I 1, 809 (1991);
and J. Phys. A 23, L1229 (1990). _

[12] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[13] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia,
and B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

[14] B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974); U. Frisch
and G. Parisi, in Turbulence and Predictability in Geophys-
ical Fluid Dynamics and Climate Dynamics, Proceedings
of the International School of Physics “Enrico Fermi,”
Course LXXXVIII, edited by M. Ghil et al. (North-
Holland, New York, 1985).

[15] P. Meakin, A. Coniglio, H. E. Stanley, and T. A. Witten,
Phys. Rev. A 34, 3325 (1986); M. E. Cates and T. A. Wit-
ten, Phys. Rev. Lett. 56, 2497 (1987).

[16] F. Wegner, Z. Phys. B 36, 209 (1980); C. Castellani and L.
Peliti, J. Phys. A 19, L429 (1986).

[17] Y. Park, A. B. Harris, and T. C. Lubensky, Phys. Rev. B
35, 5048 (1987).

[18] Fractals and Disordered Systems, edited by A. Bunde and
S. Havlin (Springer-Verlag, Berlin, 1991).

[19] A. W. W. Ludwig, Nucl. Phys. B 330, 639 (1990).

[20] M. Araujo, S. Havlin, and H. E. Stanley, Phys. Rev. A 44,
6913 (1991).

[21] In the actual simulations, we have eliminated the interven-
ing zeros, which has the effect of scaling x down by a fac-
tor of 2.

[22]J. Villain, B. Séméria, F. Lancon, and L. Billard, J. Phys.
C 16, 6153 (1983); and U. Schulz, J. Villain, E. Brézin, and
H. Orland, J. Stat. Phys. 51, 1 (1988).



